首页 | 本学科首页   官方微博 | 高级检索  
文章检索
  按 检索   检索词:      
出版年份:   被引次数:   他引次数: 提示:输入*表示无穷大
  收费全文   227599篇
  免费   17904篇
  国内免费   8925篇
电工技术   12477篇
技术理论   24篇
综合类   14285篇
化学工业   37790篇
金属工艺   13219篇
机械仪表   14665篇
建筑科学   17588篇
矿业工程   7497篇
能源动力   6458篇
轻工业   13542篇
水利工程   3594篇
石油天然气   16776篇
武器工业   1665篇
无线电   25050篇
一般工业技术   27092篇
冶金工业   12608篇
原子能技术   2254篇
自动化技术   27844篇
  2024年   428篇
  2023年   3614篇
  2022年   5284篇
  2021年   8675篇
  2020年   6995篇
  2019年   5897篇
  2018年   6655篇
  2017年   7506篇
  2016年   6729篇
  2015年   8920篇
  2014年   11350篇
  2013年   13362篇
  2012年   14379篇
  2011年   15603篇
  2010年   13592篇
  2009年   12847篇
  2008年   12526篇
  2007年   12000篇
  2006年   12498篇
  2005年   10894篇
  2004年   7357篇
  2003年   6299篇
  2002年   5536篇
  2001年   4958篇
  2000年   5491篇
  1999年   6415篇
  1998年   5401篇
  1997年   4409篇
  1996年   4143篇
  1995年   3503篇
  1994年   2790篇
  1993年   1960篇
  1992年   1530篇
  1991年   1211篇
  1990年   930篇
  1989年   724篇
  1988年   530篇
  1987年   326篇
  1986年   267篇
  1985年   189篇
  1984年   131篇
  1983年   99篇
  1982年   120篇
  1981年   97篇
  1980年   69篇
  1979年   36篇
  1978年   26篇
  1977年   20篇
  1976年   35篇
  1973年   13篇
排序方式: 共有10000条查询结果,搜索用时 15 毫秒
41.
4-methyl-2,4-bis(4-hydroxyphenyl)pent-1-ene (MBP), a major active metabolite of bisphenol A (BPA), is generated in the mammalian liver. Some studies have suggested that MBP exerts greater toxicity than BPA. However, the mechanism underlying MBP-induced pancreatic β-cell cytotoxicity remains largely unclear. This study demonstrated the cytotoxicity of MBP in pancreatic β-cells and elucidated the cellular mechanism involved in MBP-induced β-cell death. Our results showed that MBP exposure significantly reduced cell viability, caused insulin secretion dysfunction, and induced apoptotic events including increased caspase-3 activity and the expression of active forms of caspase-3/-7/-9 and PARP protein. In addition, MBP triggered endoplasmic reticulum (ER) stress, as indicated by the upregulation of GRP 78, CHOP, and cleaved caspase-12 proteins. Pretreatment with 4-phenylbutyric acid (4-PBA; a pharmacological inhibitor of ER stress) markedly reversed MBP-induced ER stress and apoptosis-related signals. Furthermore, exposure to MBP significantly induced the protein phosphorylation of JNK and AMP-activated protein kinase (AMPK)α. Pretreatment of β-cells with pharmacological inhibitors for JNK (SP600125) and AMPK (compound C), respectively, effectively abrogated the MBP-induced apoptosis-related signals. Both JNK and AMPK inhibitors also suppressed the MBP-induced activation of JNK and AMPKα and of each other. In conclusion, these findings suggest that MBP exposure exerts cytotoxicity on β-cells via the interdependent activation of JNK and AMPKα, which regulates the downstream apoptotic signaling pathway.  相似文献   
42.
Nowadays, oil pollution has become more serious, which causes great threats both to the ecological environment and human life. In this study, a novel type of multifunctional deacetylated cellulose acetate/polyurethane (d-MCA:MTPU) composite nanofiber membranes for oil/water separation are successfully fabricated by electrospinning, which show super-amphiphilicity in air, super-hydrophilicity in oil, and oleophobicity in water. All the d-MCA:MTPU composite nanofiber membranes with different mass ratios can be used as water-removing, oil-removing, and emulsion separation substance only by gravity driving force. The highest separation flux for water and oil reaches up to 37 000 and 74 000 L m−2 h−1, respectively, and all the separation efficiencies are more than 99%. They have outstanding comprehensive mechanics performance, which can be controlled by simply adjusting the mass ratios. They show excellent antifouling and self-cleaning ability, endowing powerful cyclic stability and reusability. Those results show that d-MCA:MTPU composite nanofiber membranes have great application prospects in oil/water separation.  相似文献   
43.
Based on the experimental reports, Au-decoration on the ZnO nanostructures dramatically increases the electronic sensitivity to H2S gas. In the current study, we computationally scrutinized the mechanism of Au-decoration on a ZnO nanotube (ZON) and the influence on its sensing behavior toward H2S gas. The intrinsic ZON weakly interacted with the H2S gas with an adsorption energy of ?11.2 kcal/mol. The interaction showed no effect on the HOMO–LUMO gap and conductivity of ZON. The predicted response of intrinsic ZON toward H2S gas is 6.3, which increases to 78.1 by the Au-decoration at 298 K. The corresponding experimental values are about 5.0 and 80.0, indicating excellent agreement with our findings. We showed that the Au atom catalyzes the reaction 3O2?+?2H2S?→?2SO2?+?2H2O. Our calculated energy barrier (at 298 K) is about 12.3 kcal/mol for this reaction. The gap and electrical conductance Au-ZON largely changed by this reaction are attributed to the electron donation and back-donation processes. The obtained recovery time is about 1.35 ms for desorption of generated gases from the surface of the Au-ZON sensor.  相似文献   
44.
Hydrodynamics characteristics of a fast and highly exothermic liquid–liquid oxidation process with in situ gas production in microreactors were studied using a newly developed experimental method. In the adipic acid synthesis through the K/A oil (the mixture of cyclohexanol and cyclohexanone) oxidation with nitric acid, bubble generation modes were divided into four categories. The gas production became more intensive, unstable, even explosive with increasing the oil phase feed rate and the temperature. A novel automatic image processing method was developed to monitor the instantaneous velocity online by tracking the gas–liquid interface. The axial velocity at the same location was unstable due to the changing gas production rate. Furthermore, the actual residence time was obtained easily with being only 36% of the space–time minimally, beneficial for establishing accurate kinetics and mass transfer models with time participation. Finally, an empirical correlation was developed to predict the actual residence time under different conditions.  相似文献   
45.
The joining of liquid-phase sintered SiC (LPS-SiC) ceramics was conducted using spark plasma sintering (SPS), through solid state diffusion bonding, with Ti-metal foil as a joining interlayer. Samples were joined at 1400 °C, under applied pressures of either 10 or 30 MPa, and with different atmospheres (argon, Ar, vs. vacuum). It was demonstrated that the shear strength of the joints increased with an increase in the applied joining pressure. The joining atmosphere also affected on both the microstructure and shear strength of the SiC joints. The composition and microstructure of the interlayer were examined to understand the mechanism. As a result, a SiC-SiC joining with a good mechanical performance could be achieved under an Ar environment, which in turn could provide a cost-effective approach and greatly widen the applications of SiC ceramic components with complex shape.  相似文献   
46.
SiC is a promising functional ceramic material with many great properties. High concentrated SiC slurry with excellent rheology and stability is required in some processes of ceramic forming. In this work, the dispersion of SiC powders was obviously improved by ternary modifiers: γ-(2,3-epoxypropoxy) propytrimethoxysilane (KH560), sodium humate and sodium dodecyl sulfate (SDS). Modified SiC slurry showed the lowest viscosity of 0.168 Pa s at a solid content of 50 vol%. The maximum absolute value of zeta potential of SiC increased from 47.3 to 61.6 mV by modification. Sedimentation experiments showed that a highly stable suspension of modified SiC was obtained at pH 10. SiC green body with high density of 2.643 g/cm3 was prepared with modified powders by slip casting. X-ray photoelectron spectra (XPS) and thermogravimetry (TG) measurements indicated the adsorption of modifiers on SiC surface. Therefore, modified SiC powders could stably disperse in aqueous media due to the increase of electrosteric repulsion between particles. The novel strategy used in this study could further improve the dispersion of SiC powders.  相似文献   
47.
Plant fiber reinforced polymer composites (PFRPs) in practical application are often subjected to both complex friction and variable temperature environments. The present work explores the possibility of reinforcing rice husk/polyvinyl chloride (RH/PVC) composites with basalt fibers (BF) for developing a new wear resistant material with improved thermal stability. The results showed that the structural strength and wear resistance of the composites increased at first and then decreased with an increasing ratio of BF/RH, the highest value occurred at a BF/RH ratio of 8/42. The thermal stability of composites had a positive relationship with BF/RH ratio. The composites added with BF all possessed improved performance in comparison with unadded composites. Hence, the findings of this article proposed some new perspectives on improving the wear resistance and thermal stability of PFRPs that would broaden their practical application.  相似文献   
48.
SrF2 transparent ceramic is a promising upconversion material due to the low phonon energy. The effect of different sintering temperatures on Er:SrF2 transparent ceramics was investigated. The suitable sintering temperature for Er:SrF2 transparent ceramics was 900 °C by hot-pressed sintering in this study. High quality of Er:SrF2 transparent ceramics with different doping concentrations were obtained. The upconversion luminescence spectra and decay behavior were compared between Er:SrF2 and Er:CaF2 transparent ceramics with different Er3+ doping concentration. The green emission of 5 at.% Er:SrF2 ceramic was much stronger than that of 5 at.% Er:CaF2 ceramic, while the red emission of Er:SrF2 ceramic was almost the same as that of Er:CaF2 ceramic. The upconversion luminescence lifetime of Er:SrF2 transparent ceramics was longer than that of Er:CaF2.All the results indicated Er:SrF2 transparent ceramics was a candidate for green fluorescent upconversion materials.  相似文献   
49.
LiFePO4 modified by N-doped graphene (NG) with a three-dimensional conductive network structure was synthesized via a one-step in situ hydrothermal method. The effects of N amount of NG on the phase structure, morphology, and electrochemical properties of LiFePO4 are investigated in this study. X-ray diffraction (XRD) results show that doping suitable N amounts in NG do not alter the crystal structure of LiFePO4, and scanning electron microscopy (SEM) images show that NG can slightly reduce the particle size of LiFePO4. The high-resolution transmission electron microscopy (HRTEM) results show that the LiFePO4 particles are well covered and connected by NG. The electrochemical performance confirms that LiFePO4 modified by 20% N-doped graphene (named LFP/NG-4) displays a perfect specific capacity of 166.6 mAh·g?1 at a rate of 0.2C and can reach 125 mAh·g?1 at a rate of 5 C. Electrochemical impedance spectroscopy (EIS) results illustrate that the charge transfer resistance value of the LFP/NG-4 composite is only 58.6 Ω, which is very low compared with LiFePO4. Cyclic voltammetry (CV) tests indicate that the addition of 20% N-doped graphene can effectively reduce electrode polarization and improve reversibility. The LFP/NG-4 composite with a three-dimensional conductive network structure can be regarded as a promising cathode material for Li-ion batteries.  相似文献   
50.
Suspension plasma spraying (SPS) as a potential technique to prepare thermal barrier coatings (TBCs) has been attracting more and more attention. However, most reports on SPS were carried out in the atmosphere. Given the unique features of in-flight particles and plasma jets under low pressure, the resulting coatings are expected to be different from those under atmospheric pressure. In this article, yttria-stabilized zirconia (YSZ) thermal barrier coatings were prepared using suspension plasma spraying under different environmental pressures. The results show that as the environmental pressure decreased, the column-like structural coating turned into a vertical crack segmented structure, as well as a dramatic decrease in surface roughness. More nanoparticle agglomerates were formed in the coating under lower environmental pressures. The real porosity of the coating increased with a decrease in environmental pressure.  相似文献   
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号